Graphical Resource Algebra, from Linear to Affine

Filippo Bonchi!, Robin Piedeleu?, Pawet Sobocinski®, and Fabio Zanasi?

LUniversita di Pisa, Italy
2University College London, UK

3University of Southampton, UK

Graphical linear algebra is a diagrammatic lan-
guage that allows compositional reasoning about R-
linear systems, for different semirings R. When R is
a field, its semantics and equational theory are well-
understood. In this context, graphical linear algebra
is closely related to signal flow graphs, another calcu-
lus commonly used in engineering and control theory
to specify linear dynamical systems.

Recent work by the authors [4] revealed that when
R = N, graphical linear algebra can be interpreted as
an algebra of connectors that manipulate finite dis-
crete resources. When endowed with state, the re-
sulting calculus is expressive enough to capture the
behaviour of Petri nets in a natural way and allows
for modular reasoning about their semantics.

In an orthogonal direction, we showed how to ex-
tend this formalism with a connector for affine be-
haviour [5]. The extension, which we call graphi-
cal affine algebra, is simple but remarkably power-
ful: it can model systems with richer patterns of be-
haviour such as mutual exclusion-when R = N—or
non-passive electrical components—when R = R(z).

Our main technical contributions are complete ax-
iomatisations of graphical linear/affine algebra for all
of the above interpretations. We have also shown,
as case studies, how the same language can cap-
ture electrical circuits and the calculus of stateless
connectors—a coordination language for distributed
systems.

Graphical linear algebra (GLA) [8, 16] is a di-
agrammatic language used to reason compo-
sitionally about different types of linear com-

puting devices. String diagrams of GLA are se-
quential and parallel compositions of the fol-
lowing basic operations, for some semiring R.

—o| <« |o—| »| p—|o—|{— keR (1)

Here —»— represents addition, o— the con-
stant zero, is multiplication by &k, —«
copy, —e discard, while »— and e— are the
same operations right-to-left. This semantics
is formalised via a recursively defined func-
tor from diagrams to relations over R-vectors:
thus right-to-left operations are simply de-
noted by the opposite relations of their left-
to-right cousins.

Over fields, GLA has some claims of being
fundamental. For R = Z/2, it is the syntax of
the phase-free ZX-calculus [7], a simple al-
gebra for pure state qubit computation [10].
For R = R(x) the field of polynomial fractions,
it provides a compositional account of signal
flow graphs [14, 13, 15], a graphical language
commonly used by engineers to specify linear
dynamical systems. In fact, GLA generalises
signal flow graphs [2, 6, 12] and provides a
purely graphical framework in which to recast
well-known control-theoretic notions.

1 From Control to Concurrency Theory

More recently, in [4], we showed that, GLA
over N captures concurrent patterns of inter-
action, including, for instance, a compositional




account of the semantics of Petri nets. Indeed,
the lack of additive inverses in N is well-suited
to situations where negative resources (here,
the tokens in Petri nets) are not meaningful.

In order to explain this difference, consider
the following instructive example:

>4 (2)

In this context, the scalar plays the dis-
tinguished role of a register: it admits an op-
erational interpretation as a simple buffer that
holds the value it last observed on the left for
one timestep before releasing it on the right.
This is crucial to capture stateful systems. Over
R(z), the behaviour of (2), which can be com-
puted from the denotation of the generators, is
trivial: it is equal to the full relation —e e— =
R(z) x R(z), relating any input to any output.

The “Aha-Erlebnis” is that, once interpreted
over N, the same diagram with the same op-
erational understanding of the register models
a non-trivial behaviour. Wires now carry dis-
crete tokens that cannot be borrowed (i.e. they
cannot be a negative quantity). Thus, when
computing the denotation of the diagram in (2),
the output n € N is now forced to be a number
of tokens smaller than the one k € N stored in
the register, and the new value in the register
will be m + (k — n), for input m € N. In other
words, the diagram now models the same be-
haviour as a place in a Petri net!

Note that, in these different computational
interpretations—from quantum and control-
theoretic to concurrent—the set (1) of syntac-
tic primitives and the specification of their re-
What
changes is the denotational domain, that is,

lational behaviour remains the same.

the kinds of relations that are characterised.
GLA over a field (e.g. Z/2, R or R(z)), equipped
with the equations of interacting Hopf algebras,
axiomatises linear relations (relations that are

linear subspaces) [8, 16]. Sound and fully com-
plete axiomatisations for GLA over a field were
given independently in [8, 16] and [2]. One
of our main technical contributions is a sound
and fully complete axiomatisation of GLA over
N, complete for additive relations (relations
that are N-semimodules, i.e. ,containing the
zero vector and closed under addition) [4].

To showcase expressiveness, we have also
shown that the behaviour of Petri nets is de-
finable in GLA in a natural way. In the spirit
of process algebra, the approach is composi-
tional, allowing for the representation of open
systems and emphasising interaction; in the
spirit of Petri, the syntax is graphical, empha-
sising the connection topology of systems.

2 Richer Behaviour: Affine Relations

Concurrent programming can be seen as the
marriage of parallelism with synchronisation
mechanisms. One of the earliest and most in-
fluential synchronisation mechanism is mutual
exclusion [11], with the same underlying idea
present in modern concurrent programming
through hardware-assisted atomic constructs
such as compare-and-set (CAS). Any theory that
takes up Abramsky’s challenge [1] to iden-
tify the fundamental structures of concurrency
ought to be expressive enough to account for
such fundamental synchronisation patterns.
GLA over N is not quite expressive enough
to capture essential behaviour patterns such as
mutual exclusion. Indeed, consider the fol-
lowing idealised mutual exclusion connector,
as considered in the calculus of stateless connec-
tors [9].
b (3)
The legal behaviours, as an N-valued relation,
is the finite set {(((3),0), ((}).1),((9),1)} indicat-
ing that only one of the two inputs can syn-
chronise with the output at any one time. The




relation is not additive: e.g. ((}),1) + ((9),1) =
((1),2) is not included. We shall see, however,
that it is an N-dffine relation, in a sense made
precise in [5]. Moving from additive to affine
relations expands the relational universe. For
example, the empty relation o is affine, but not
additive.

The concept of affinity is of course bet-
ter known over fields and is the mathemati-
cal playground of affine and convex geometry.
It turns out that moving to affine relations is
fruitful also in this context, in modelling elec-
GLA has already
been used to define a compositional semantics

trical circuits for example.

for passive linear circuits [3], that is, electrical
circuits built exclusively from resistors, induc-
tors and capacitors. The advantage of this ap-
proach is that it provides a rigorous setting in
which to perform open network analysis purely
diagrammatically.

Non-passive components, however, like volt-
age and current sources, are not linear but
affine. For example, a k-volt source constrains
the voltage (¢1, ¢2) and current (i) pairs to be
the following relation:

S = ()N Ibh-s=k @

In [5], we have shown that (i) the syntax of
GLA can be extended in a simple and principled
fashion to capture N-affine and R-affine rela-
tions and (ii) have given an equational charac-
terisation of denotational equality, arriving at
a sound and complete calculus for both types
of affine relations.

Extending GLA: Graphical Affine Algebra. The
syntax of Graphical Affine Algebra (GAA) ex-
tends (1) with just one additional connector:

—

expressing the constant ‘1’ behaviour and rep-
resenting the relation {(e,1)}. This simple

extension allows us to capture, not only the

aforementioned examples, but all N or R-affine
relations—in fact, affine relations over any
field K.

For mutual exclusion, we first define —+ as

+:_§.

The result is a wire that can only carry 0 or 1 .
Given this, the mutual exclusion connector (3)
is simply the composition of _»— with ——.
For non-passive circuit components, it is not
difficult to see that the relation in (4) is ex-
pressed by the following GAA diagram:

>
Finally, the empty relation g—which is both
N- and R-affine—appears in our syntax as o
Here the new +— generator is composed with
—o. This amounts to asserting “1 = 0”; de-
notationally, this is the composition of {(e,1)}
with {(0,e)}, which is empty.
Equational characterisations. As our last main
technical contribution, we provide two sound
and fully complete axiomatisations for GAA
over affine relations, for the two cases of in-
terest in our applications: N and any field K.
The equational theories are simple, with only
a few additional equations that govern the in-
teraction of — with the remaining GLA prim-
itives. A particularly interesting equation is
shared by the two theories and concerns the
properties of the empty relation—it allows us
to disconnect any wire:

o (9) o
T —e —

This guarantees that —o behaves analogously to
logical false; in particular, we are able to prove

that

o o
for any diagrams ¢ and d, in accordance with
the semantics.




References

[1] Samson Abramsky. What are the funda-
mental structures of concurrency? we still
don’t know! arXiv:1401.4973, 2014.

[2] John Baez and Jason Erbele. Categories in
control. TAC 30:836—-881, 2015.

[3] John C. Baez, Brandon Coya, and Fran-
ciscus Rebro. Props in network theory.

arXiv:1707.08321, 2017.

[4] Filippo Bonchi, Josh Holland, Robin
Piedeleu, Pawel Sobocinski, and Fabio
Zanasi. Diagrammatic algebra: from
linear to concurrent systems. In POPL ’19.
Available at http://www.zanasi.com/fabio/

files/paperPOPL19.pdf.

[5] Filippo Bonchi, Robin Piedeleu, Pawet
Graph-
In LICS, 2019.
Available at http://www.zanasi.com/fabio/

Sobocinski, and Fabio Zanasi.
ical affine algebra.

files/paperLICS19.pdf.

[6] Filippo Bonchi, Pawet Sobocinski, and
Fabio Zanasi. Full abstraction for signal
flow graphs. In POPL ’15, pages 515-526.

[7] Filippo Bonchi, Pawet Sobocinski, and
Fabio Zanasi. Interacting bialgebras are
Frobenius. In FOSSACS ’14, pages 351-365.

[8] Filippo Bonchi, Pawel Sobociniski, and
Fabio Zanasi. Interacting Hopf algebras.
J Pure Appl Alg, 221(1):144—184, 2017.

[9] Roberto Bruni, Ivan Lanese, and Ugo
Montanari. A basic algebra of state-
less connectors. Theor Comput Sci, 366(1-

2):98-120, 2006.

[10] Bob Coecke and Ross Duncan. Interacting
quantum observables. In ICALP ’08, pages
298-310.

[11] Edsger W. Dijkstra. Cooperating sequen-
tial processes. In The origin of concurrent
programming,
1968.

pages 65-138. Springer,

[12] Brendan Fong, Paolo Rapisarda, and
Pawet Sobocinski. A categorical approach
to open and interconnected dynamical

systems. In LICS ’16.

[13] Samuel J. Mason. Feedback Theory: I. Some
Properties of Signal Flow Graphs. MIT Re-
search Laboratory of Electronics, 1953.

[14] Claude E. Shannon. The theory and de-
sign of linear differential equation ma-
chines. Technical report, National De-

fence Research Council, 1942.

[15] Jan C. Willems. The behavioural approach
to open and interconnected systems. IEEE
Contr Syst Mag, 27:46-99, 2007.

[16] Fabio Zanasi. Interacting Hopf Algebras: the
theory of linear systems. PhD thesis, Ecole
Normale Supérieure de Lyon, 2015.



http://www.zanasi.com/fabio/files/paperPOPL19.pdf
http://www.zanasi.com/fabio/files/paperPOPL19.pdf
http://www.zanasi.com/fabio/files/paperLICS19.pdf
http://www.zanasi.com/fabio/files/paperLICS19.pdf

	From Control to Concurrency Theory
	Richer Behaviour: Affine Relations
	References

